

http://fazia.in2p3.fr

Tomasz Kozik for FAZIA Collaboration

our-π

Cracow 4 June 2012

Array

The goal of the FAZIA Collaboration is to build a new detection array for European Radioactive Nuclear Beam facilities (SPIRAL-2/GANIL, LNL/SPES, FAIR/NUSTAR and <u>EURISOL</u>).

The detection array will be used to study Dynamics and Thermodynamics of nuclear collisions

The FAZIA organization

- Spoke-person: R. Bougault
- Deputy Spoke-person: G. Poggi
- Task Group1: Physics for PHASE II BIS, G. Casini (chairman),

E. Vient (vice- chairman)

- Task Group2: Data analysis, N. Le Neindre (chairman)
- Task Group3: DAQ-FEE-Trigger, P. Edelbruck (chairman),

A .Ordine (vice-chairman)

- Task Group4: Mechanics, M. Guerzoni (chairman), Y. Merrer (vice-chairman)
- Task Group5: Cesium Iodide crystals and Detectors B. Borderie (chairman),
 G. Poggi (vice-chairman)
- FPMB members: B. Borderie, R. Bougault, G. Casini, N. Le Neindre,

P. Edelbruck, M. Guerzoni, J. Frankland, T. Kozik, G. Poggi,

A. Raduta, E. Rosatto.

Tomasz Kozik for FAZIA Collaboration

۲

WHAT IS NEEDED FOR EXPERIMENTATION AT PRESENT AND FUTURE RNB FACILITIES?

The general method to achieve the goal: Fast digitalization of signals from detectors + Pulse shape analysis (PSA)

Tomasz Kozik for FAZIA Collaboration

FAZIA DETECTOR - DESTINATION

Tomasz Kozik for FAZIA Collaboration

FAZIA detector - portability

Transportable array to various stable and radioactive Thinness of the beam facilities, e.g.: IIIIIIIII

GANIL/SPIRAL/SPIRAL2 Caen GSI/FAIR/NUSTAR Darmstadt

LNL/ALPI/SPES Legnaro

LNS/EXCYT/FRIBS Catania

Time Schedule

Three programmed FAZIA Phases + final array

1. Phase I: R&D on detection techniques, advanced solutions of digital electronics (2006-2008)

2. Phase II: R&D and a prototype array with several modules, implementing the best identified solutions (2009-2012)

3. Phase III: a Demonstrator array (2012-- ?) Tomorrow talk of Giovanni Casini

4. Final goal: build the full array for lower (SPIRAL2 / LNL / SPES) and higher energy (GANIL / LNS / FAIR / EURISOL / RIA) studies with exotic and stable beams.

prototype used in experiments

Series of experiments performed in LNL & LNS & GANIL within phases I, II, III testing prototype

- **1.** Single chip method Csl readout by Si
- **2.** Channeling/orientation effects in crystal lattice
- **3. Dopant homegenuity of semiconductor material**
- 4. Planarity and paralelism of front and rear sides
- **5.** Rear front injection influence on the PSA
- 6. Design of dedicated preamplifiers
- 7. Constancy of the electric field as a function of time
- **8.** Digital processing methods
- 9. Development of on line Pulse Shape Analysis methods

10. Theoretical description of plasma delay effects

Single Chip Tlescope mode - CsI readout by Si

Digital techniques permitted to efficiently implement a "Single Chip Telescope" (*G.Pasquali et al: NIM A301 (1991) 101) and L.Bardelli et al: NP A746 (2004) 272*)

Channeling/orientation effects in crystal lattice

Tomasz Kozik for FAZIA Collaboration

Channeling/orientation effects in crystal lattice

Detectors made of random-cut Silicon were not yet available. All detectors are cut 0° off <111>, axis parallel to the main crystallographic planes

Tomasz Kozik for FAZIA Collaboration

Channeling/orientation effects in crystal lattice

An example of a Pulse Shape Analysis application: <u>isotopic</u> discrimination (⁵⁸Ni vs ⁶⁰Ni, same energy, 703 MeV):

Tomasz Kozik for FAZIA Collaboration

Homogeneity of Si - Uniformity of electric field

A newly developed procedure to map Silicon resistivity, based on Transient Current Technique has been systematically applied to our detectors

good resistivity uniformity \rightarrow good uniformity of electric field \rightarrow position independence of timing

Tomasz Kozik for FAZIA Collaboration

Homogeneity of Si - Uniformity of electric field

non-uniform

very uniform

Energy vs risetime (SCT.1) - random configuration

PSA plots - dependence on resistivity non-homogenuities

L. Bardelli et al. NIM A654 (2011) 272

Tomasz Kozik for FAZIA Collaboration

Rear/front injection influence on the PSA

Comparison between mean charge signals in front and rear injection for various stopped particles of the same energy (range in the silicon) Z=8: 160 MeV (197µm) and 200 MeV (282µm), Z=22: 660 MeV (182µm) and 910 MeV (289µm), respectively. The signal shapes are for front injection (blue) and rear injection (red).

Tomasz Kozik for FAZIA Collaboration

Same $\Delta E(Si1)$ -E(Si2) matrices as focusing on the low energy part. Punching through particles have been removed.

Tomasz Kozik for FAZIA Collaboration

21

Linearization of the previous $\Delta E(Si1)$ -E(Si2) matrices, front (blue line) and rear (red line) injection. For each atomic number Z, isotopic spectra have been normalized on the yields obtained for 21Ne, 23Na, 25Mg, 27Al, 29Si, 32P, 32S, 35Cl and 38Ar respectively

Tomasz Kozik for FAZIA Collaboration

Tomasz Kozik for FAZIA Collaboration

Rear/front injection influence on the PSA

Energy thresholds for Z identification with $\Delta E(300\mu m)$ -E technique (black triangles) and with PSA technique (energy vs charge risetime: red points "rear injection" and blue squares "front injection") as a function of atomic number Z. The thresholds values are presented in terms of total energy (left) and energy per nucleon (right).

Particle Identification (PID) by $\Delta E(Si1) - E(Si2)$ correlation

Tomasz Kozik for FAZIA Collaboration

PID 3 detectors $\Delta E(Si1) + E(Si2)$ vs light output of rear CsI

Tomasz Kozik for FAZIA Collaboration

PID 3 detectors $\Delta E(Si1) + E(Si2) - CsI$ method

Tomasz Kozik for FAZIA Collaboration

PSA Single 500 μ m detector Charge identyfication

Tomasz Kozik for FAZIA Collaboration

Correction of non-uniformity – Andrew Kordyasz

Correction of non-uniformity – Andrew Kordyasz

