#### Piotr Bednarczyk

Instytut Fizyki Jądrowej <sup>im. Henryka Niewodniczańskiego</sup> Polskiej Akademii Nauk

## PREPARATORY WORK ON INSTALLATION OF THE RECOIL FILTER DETECTOR AT GANIL

## <u>IFJ PAN, Kraków</u> P.Bednarczyk, M.Ciemała\*, M.Krzysiek\*, W.Męczyński, M.Ziębliński \*student PhD

<u>GANIL, Caen</u> Christelle Schmitt, Navin Alahari, Maurycy Rejmund, Jean-Pierre Wieleczko

## Radioactive Ion Beams (reminder)

### **Projectile Fragmentation**



## *In flight* : GANIL, GSI, RIKEN, MSU

High energies of projectiles (~100MeV/u),

- Relativistic Coulomb excitation
- Fragmentation



Energy around the Coulomb barrier
Posible use of <u>fusion evaporation reactions</u>



## RIB application in studies of extreme high spins

Spiral2 Day1-Phase2 LoI, A.Maj (Kraków), A.Leoni (Milano) et al. Study of collective modes of excitations in neutron rich Ba isotopes via fusion-evaporation reactions

Reaction:

RIB: <sup>90</sup>Kr (370MeV)+ <sup>48</sup>Ca  $\rightarrow$  <sup>138</sup>Ba (CN), L<sub>max</sub> ~ 90 ħ

#### Setup:

 $\Box \gamma$ -ray detectors PARIS (2 $\pi$ ), EXOGAM2/AGATA

ER detector for projectiles and fission fragments rejection

#### Evaporation Residues separation technique with VAMOS at 0°



 $B\rho \propto A/Q \cdot v$ 



 $^{40}Ca (196 \text{MeV}) + {}^{150}\text{Sm} \rightarrow {}^{190}\text{Pb}^*$ C.Schmitt et al., NIM A621 (2010) 558

Unfavorable case of inverse kinematics reactions

<sup>94</sup>Kr (430MeV)+ <sup>48</sup>Ca  $\rightarrow$  <sup>142</sup>Ba (CN)  $\frac{v/c (rec) \sim 7\%}{v/c (proj) \sim 10\%}$ 



### **Recoil Filter Detector - an alternative solution**



 RFD is a HI detector that measures evaporation residues in coincidence with γ-rays detected in a Ge array

 Time-of-Flight technique is applied to select evaporation residues in event-by-event mode

## EUROBALL and RFD (Strasbourg 1999-2003)



## GASP and RFD (Legnaro 2009-2012)

 All (40) Ge-ACS detectors remained in place





## RFD 3D view



## HI Detection Technique



## HI Detection Technique



### Measurement with a continuous beam

- possible if the recoil and the projectile deposit different energies in a foil
- feasible only at low intensity beams (I << 1pnA)</li>
- may not work with a polycrystalline CVDD

### 106MeV <sup>18</sup>O + <sup>28</sup>Si, DC beam



### Improvement of $\gamma$ -spectra by a coincident recoil detection

#### 92 MeV <sup>16</sup>O + 0.4 mg/cm<sup>2</sup> <sup>208</sup>Pb



#### 68 MeV <sup>18</sup>O + 0.8 mg/cm<sup>2</sup> <sup>30</sup>Si



Heavy systems:

- fission background reduction
- $\checkmark$  low ER cross sections  $\sigma \sim 0.1$  mbarn

Large recoil velocity:
✓ reduction of the Doppler broadening

## Gamma-ray energy resolution

![](_page_14_Figure_1.jpeg)

G. Jaworski

## Gamma-ray energy resolution

AD Energy (MeV

1940 Brierzy Busy

FWHM = 2.4 keV @ 1.3 MeV GASP + RFD լ թե Centroid = 1332.5 keV 12 FWHM = 8.58635 keV

![](_page_15_Figure_2.jpeg)

ε=5.0% GASP:  $\Delta \theta \sim 10^{\circ}$ 

![](_page_15_Picture_4.jpeg)

Simulations: G. Jaworski

Centroid = 1332.47 keV FWHM = 3.13711 keV

-900

# Estimation of a short lifetime

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

![](_page_16_Figure_3.jpeg)

- Energy of a γ-ray emitted in a target (B) is not sufficiently Doppler corrected
- A level lifetime can be expressed by number of decays in vacuum (A) relative to a total γ-line intensity (A+B)
- τ range : <50 fs, 1ps>

## RFD G4 simulations for the Spiral2 D1P2 experiment

![](_page_17_Figure_1.jpeg)

![](_page_17_Picture_2.jpeg)

## Efficiency

![](_page_18_Figure_1.jpeg)

## Individual element size and position

![](_page_19_Figure_1.jpeg)

## Possible projectile-ER separation by ToF at 4m

![](_page_20_Figure_1.jpeg)

v/c~9%

v/c ~ 6 %

# Estimation of radioactivity deposition

![](_page_21_Figure_1.jpeg)

## Further improvements

- Realistic RIB profile
- True detector geometry
- Inclusion of compecting reaction channels

![](_page_22_Figure_4.jpeg)

Simple logics of the RFD Trigger & the DAQ system

![](_page_23_Figure_1.jpeg)

### Connection to a digital triggerless DAQ (AGATA, EXOGAM, PARIS)

#### AGATA Demonstrator

![](_page_24_Figure_2.jpeg)

# Conclusion

- Recoil Filter Detector a good solution for inverse kinematics reactions with RIB
- Projectile, fission rejection
- High efficiency for ER
- Doppler broadening minimization
- Negligible radioactivity deposition