Study of proton emitting light nuclei: Spectroscopy of the unbound nucleus ¹⁸Na, and ¹⁹Mg(2p)

Marlène Assié (IPN Orsay)

F. de Oliveira (GANIL)

R. Wolski (Krakow - Dubna)

e521aS collaboration

Physics Letters B, Volume 712, Issue 3, 6 June 2012, Pages 198-202

Two proton radioactivity

Predictions

Goldansky et al, NP (1960) Grigorenko et al NPA (2003)

⁶Be, ¹²O, ¹⁶Ne

Bochkarev et al, NPA (1989) Kryger et al, PRL (1995)

⁴⁵Fe, ⁴⁸Ni, ⁵⁴Zn ...

Giovinazzo et al PRL (2002) Blank et al PRL (2005) ...

¹⁹Mg

Mukha et al, PRL (2007)

¹⁹Mg : two-proton radioactivity status

I. Mukha et al, PRC (2008)

Agreement for dominant (88%) d-wave configuration

 $^{19}Mg = {}^{17}Negs + \pi (d5/2)^2$

The same interaction describes ¹⁸Na and ¹⁹Mg

¹⁸Na is only intermediate nucleus measurable

I. Mukha et al, PRL (2007)

 $Q_{2p}(^{19}Mg) = 0.750 (50) MeV$

 $T_{1/2}$ (¹⁹Mg) = 4.0 (15) ps

The case of ¹⁸Na

Experimental method : Resonant elastic scattering

V.Z. Goldberg et al, Phys At. Nucl (1997)

 $E_R = E_x - S_p$ $l \propto \Gamma_{tot}$ $h \propto \frac{\Gamma_p}{\Gamma_{tot}}$ shape $\to J^{\pi}$

I. Stefan Ph. D. Thesis

- High cross section
- Good energy resolution

Experimental set-up @ GANIL

- SPIRAL Beams : ¹⁷O / ¹⁷Ne @ 4 A.MeV, 10⁴pps
 Beam purity ~ 100%
- Targets : CH₂ (100µm) / ¹²C (125µm)
- ¹⁷Ne T_{1/2} = 0.1 s decays by βp (90%) and also βα (10%)
 -> Rotation of target 1000 r/min
 -> MCP time signal (efficiency ~100%)

Resonant elastic scattering in lab

Analysis with R-Matrix formalism $5 \times 6 = 30$ parameters

Theoretical calculations for ¹⁸Na

θ^2 ¹⁰ Na θ^2 ¹¹ Ne g.s. θ^2 ¹¹ Ne [*] (3/2)	-)
states $1d_{5/2}$ $2s_{1/2}$ $1d_{5/2}$ $2s_{1/2}$	\$1/2
1_1^- - 0.086 0.921 0.	183
2_1^- 0.644 - 0.311 0.	042
0_1^- - 0.759 -	-
N Service 1_2^- - 0.654 0.031 0.	027
N. Smirnova 2_2^- 0.004 - 0.507 0.	028
Shell model 3 ⁻ 1 0.621 - 0.109	-

The first 6 low lying states can be described by:

Shell

 $^{18}Na = {}^{17}Ne_{gs} \otimes p$

States predicted

Idem for the mirror nucleus

$$^{18}N = {}^{17}N_{gs} \otimes n$$

$$^{18}N = {}^{17}N^* (3/2-) \otimes n$$

Mirror states fitted

Theoretical calculations for ¹⁸Na

R-matrix fit of excitation function

R-matrix fit of excitation function

R-matrix fit of excitation function

State in ¹⁸ Na	Er(th) (keV)	Γ (keV) ¹⁷ Ne g.s.	Γ (keV) ¹⁷ Ne 3/2-	Er(exp) (keV)	Г(keV) g.s.	Γ (keV) ¹⁷ Ne 3/2-
11-	1300	22	0	1362 ?	<1	<1
2 ₁ ⁻	1500	8	0	1552(5)	9(3)	<1
0 ₁ -	1650	189	0	1773(40)	479 (200)	<50
2 ₂ ⁻	1950	0.2	5	1827 ?	<1	<1
1 ₂ -	2450	1275	4.8	1941	551(100)	20(5)
3 1 ⁻	2050	31	0.015	2092	53(5)	<100

Level scheme for ¹⁸Na

Level scheme for ¹⁸Na

Lifetime of ¹⁹Mg

Grigorenko, NPA (2003) Best agreement with d-wave configuration

 $\tau_{1/2}(exp)=4.0(15)ps$

Lifetime of ¹⁹Mg for sequential decay

Rev. Lett., 74 (1995) 860. Grigorenko, I.G. Mukha and M.V. Zhukov, Phys. A, 713 (2003) 372. Phys. et al, Nucl.Phys. A, 7 • R.A. Kryger €

Lifetime of ¹⁹Mg for sequential decay

Distance traveled by the first proton before the emission of the second one

$$T(E) = \frac{\hbar\Gamma}{(E-E_0)^2 + \Gamma^2/4}$$

Collision time

A.I Baz, Ya. Zel'dariclt and A. M. Perelomov

SCATTERING, REACTIONS and DECAY in NONRELATIVISTIC QUANTUM MECHANICS

$$T(E) = \frac{\hbar}{\Gamma(E)}$$

d = 5000 fm

Who is true?

E521as collaboration

M. Assie et al Physics Letters B, Volume 712, Issue 3, 6 June 2012, Pages 198-202M.

M. Assié^{1,2}, F. de Oliveira Santos¹, T. Davinson³, F. de Grancey¹, L. Achouri⁴, J. Alcántara-Núñez⁵, J.-C. Angélique⁴, C. Borcea⁶, L. Caceres¹, I. Celikovic⁷, V. Chudoba^{8,9}, D.Y. Pang¹, C. Ducoin¹⁰, M. Fallot¹¹, O. Kamalou¹, J. Kiener¹², Y. Lam¹³, A. Lefebvre-Schuhl¹², G. Lotay³, J. Mrazek¹⁴, L. Perrot², A. M. Sánchez-Benítez¹⁵, F. Rotaru⁶, M-G. Saint-Laurent¹, Yu. Sobolev¹⁴, N. Smirnova¹³, M. Stanoiu⁶, R. Stanoiu⁶, I. Stefan², K. Subotic⁷, P. Ujic^{1,7}, R. Wolski^{8,16}, P.J. Woods³ GANIL, CEA/DSM-CNRS/IN2P3, Caen France. ² Institut de Physique Nucléaire Université Paris-Sud-11-CNRS/IN2P3 91406 Orsay France. ³ School of Physics and Astronomy The University of Edinburgh Edinburgh EH9 3JZ UK. ⁴ LPC/ENSICAEN, Blvd du Maréchal Juin 14050 Caen Cedex France. ⁵ Departamento de Fisica de Particulas Universidade de Santiago de Compostela E15782 Spain. ⁶ Horia Hulubei National Institute for Physics and Nuclear Engineering PO Box MG-6 76900 Bucharest Romania. ⁷ VINCA Institute of Nuclear Sciences University of Belgrade P.0. Box 522 11001 Belgrade Serbia. ⁸ Flerov Laboratory of Nuclear Reactions JINR RU-141980 Dubna Russia. Institute of Physics Silesian University in Opava Bezručovo nám. 13 746 01 Opava Czech Republic. ¹⁰ INFN - Sezione di Catania Via S. Sofia 64 Catania 95123 Italy. ¹¹ Subatech 4 rue Alfred Kastler BP 20722 F-44307 Nantes Cedex 3 France. ¹² CSNSM, Université Paris-Sud-11 CNRS/IN2P3 91405 Orsay-Campus France. ¹³ CENBG Bordeaux France ¹⁴ Nuclear Physics Institute AS CR 250 68 Rez Czech Republic. ¹⁵ Departamento de Física Aplicada Universidad de Huelva E-21071 Huelva Spain. ¹⁶ The Henryk Niewodniczański Institute of Nuclear Physics PAS Cracow Poland.