Nuclear deformation in excited states studied by low-energy Coulomb excitation and lifetime measurements

E. Clément GANIL, Caen, France

Paweł Napiorkowski HIL, University of Warsaw, Poland

Magda Zielińska IRFU/SPhN, CEA Saclay, France

- electromagnetic structure of light krypton isotopes
- measurements in the vicinity of ⁶⁸Ni
- •measurements in the A \approx 100 region
- •technical developments for future Coulex studies

Shapes of atomic nuclei

Systematics of the neutron-deficient Kr isotopes

mixing of the ground state (from distortion of the rotational bands) E. Bouchez *et al.* Phys. Rev. Lett. 90, 082502 (2003)

Magda Zielińska, CEA Saclay

• 6 + 1 (76 Kr) or 7 + 4 (74 Kr) segmented clovers in EXOGAM

• highly segmented particle detector in forward angles: 16 sectors, 16 rings

Coulomb excitation analysis

- results inconsistent with previously published lifetimes
- new RDM lifetime measurement: Köln Plunger & GASP
 ⁴⁰Ca (⁴⁰Ca,α2p) ⁷⁴Kr
 ⁴⁰Ca (⁴⁰Ca,4p) ⁷⁶Kr

 GOSIA code: D. Cline, T. Czosnyka, C.Y. Wu

- description of experiment geometry
- subdivision of data in several ranges of scattering angle
- spectroscopic data (lifetimes, branching and mixing ratios)
- $\circ\,$ least squares fit of ${\sim}30$ matrix elements (transitional and diagonal)

Lifetime measurement

A. Görgen et al. EPJ A 26 153 (2005)

⁷⁴Kr, forward detectors (36°)gated from above

- new lifetimes in agreement with Coulex
- enhanced sensitivity for diagonal and intra-band transitional matrix elements

Results: shape coexistence in light Kr isotopes

Vicinity of ⁶⁸Ni

5

- high excitation energy of the 2⁺ state and low B(E2) in ⁶⁸Ni
- weakness of the N=40 shell gap: rapid onset of collectivity when moving away from ⁶⁸Ni
 - polarisation of the Z=28 proton core in ⁷⁰Ni (O. Perru et al., PRL 96 (2006))
 - single particle, collective and core-coupled states in Cu isotopes (I.Stefanescu et al., PRL 100 (2008))

Lifetime measurements around ⁶⁸Ni

Isotopes studied	Target	VAMOS angle	Beam energy	Date
^{62,64} Fe, ^{63,65} Co	⁶⁴ Ni	45 °	6.5 MeV/A	Oct 2008
^{70,72} Zn	⁷⁰ Zn	45 °	6.7 MeV/A	Sep 2010

Lifetime measurements in ^{62,64}Fe

J.Ljungvall et al PRC 81 (2010)

- new island of inversion: $\nu g_{9/2}$ intruder orbital necessary to explain the observed collectivity
- to reproduce measured B(E2)'s $d_{5/2}$ is mandatory
- confirmed by later measurements (W.Rother et al., PRL 106 (2011))

Core-coupled states in ^{63,65}**Co**

 ${\sf E(2^+, Ni)} \approx {\sf E(9/2^-, Co)} \ {\sf E(2^+, Fe)} \approx {\sf E(3/2^-, Co)}$

 $\begin{array}{l} \mathsf{7/2^{-}, Co > \approx |(1\pi \mathsf{f}_{7/2})^{-1} > \otimes | 0^{+}, Ni > \\ \mathsf{9/2^{-}, Co > \approx |(1\pi \mathsf{f}_{7/2})^{-1} > \otimes | 2^{+}, Ni > \\ \mathsf{3/2^{-}, Co > \approx |(1\pi \mathsf{f}_{7/2}) > \otimes | 2^{+}, Fe > \end{array}$

Lifetime measurements in ^{63,65}Co

A. Dijon et al PRC 83 (2011)

B(E2; $3/2^- \rightarrow 7/2^-$) in 63 Co « B(E2; $2^+ \rightarrow 0^+$) in 62 Fe

- \rightarrow N=40 does not collapse at Z=27 contrary to Z=26 (Fe)
- \rightarrow 3/2⁻ has a single particle character, not core-coupled

B(E2; $9/2^- \rightarrow 7/2$) in ⁶³Co compatible with B(E2; $2^+ \rightarrow 0+$) in ⁶⁴Ni: core coupled state

Lifetime measurements in ^{70,72}Zn

 I. Celikovic, VINCA/GANIL, PhD thesis

- B(E2; 4⁺ →2⁺) better test for theories than B(E2; 2⁺ →0⁺)
- lower collectivity of 4⁺ states ?
- discrepancy of the new lifetimes for 4⁺ states with low-energy Coulex results

Coulomb excitation of ⁷⁰Zn

D. Mücher et al PRC 79 (2009)

- $4^+ \rightarrow 2^+$ (901 keV) and $2^+ \rightarrow 0^+$ (885 keV) close in energy
- Coulomb excitation seems a more appropriate method to measure B(E2)'s in ⁷⁰Zn (no double peaks/tails)

Dedicated Coulomb excitation experiment to measure B(E2; $4^+ \rightarrow 2^+$) in ⁷⁰Zn to be performed in autumn 2012 at HIL Warsaw

Lifetime measurements in neutron-rich Mo, Ru, Pd isotopes

- rapid shape change at N=58
- shape coexistence: protate-oblate transitions, important role of triaxiality
- region interesting from theory point of view and not well known experimentally

Lifetime measurements in fission products (GANIL, April 2011)

- similar experimental set-up: VAMOS + EXOGAM + plunger
- target: ⁹Be: fusion + fission
- data under analysis

Complementary projects to study stable A \approx 100 nuclei at HIL

- ground states triaxial, deformation of 0^+_2 increasing with N
- ¹⁰⁰Mo: good agreement with GBH calculations (L. Próchniak et al.)
- 96,98 Mo: ${}^{0}_{2}$ band not well described

Shape evolution in ¹⁰⁴Pd

Spokesperson: M. Zielińska

- Quasi-vibrational level scheme, transition probabilities for heavier Pd not in agreement with this picture
- Considerable beta and gamma softness predicted
- What is the nature of low-lying 0⁺ states? Collective or intruder?

Quadrupole moments in ^{107}Ag

Spokespersons: K. Wrzosek-Lipska, KU Leuven / M. Zielińska

- predictions of various model very different
- strong dependence on triaxiality
- important to normalise data from Coulex of exotic Hg isotopes

Coulomb excitation of exotic beams: future

• Coulex one of the most important methods to measure transition probabilities, especially on the neutron-rich side

- increase in RIB intensities (and energies)
- multi-step excitation experiments will become common
- Si detectors at forward angles no longer an option: need for novel particle detectors

Si detectors for high-intensity RIB Coulex?

Coulomb excitation of ⁴⁴Ar

Direct beam of intensity 10³ pps hitting 5-10% of detector area

Si detectors for high-intensity RIB Coulex?

Coulomb excitation of ⁴⁴Ar

Direct beam of intensity 10³ pps hitting 5-10% of detector area

Rate equivalent to Rutherford scattering of 10^8 pps beam at $15^\circ < \theta < 25^\circ$

Identification ejectile-recoil: energy

• for Si detectors and targets of 1-2 mg/cm²: ejectile and recoil should differ in mass by roughly a factor of two

• this limits observed excitation for mass > 100 (heavy targets like Pt or Pb cannot be used)

Diamond CVD detectors

- promising detector material for harsh environment
- high $E_g \rightarrow$ negligible leakage current at the room temperature
- \bullet low dielectric constant \rightarrow low capacitance \rightarrow low noise
- high carrier mobility \rightarrow fast signal collection \rightarrow excellent timing properties
- used for beam monitoring in high-energy physics (CERN, HADES...)
- conflicting information on radiation hardness of SC CVD detectors

test of CVD detectors as possible particle detectors for Coulex to be performed at HIL Warsaw in 2012

LaBr₃ detectors for Coulex of SD bands (PARIS physics case)

- SD bands in A \approx 40 nuclei decay by high-energy gamma rays
- LaBr₃ detectors may be used to complement Ge arrays in such studies
- in-beam test of LaBr₃ detectors performed at HIL Warsaw in 2009 (¹²C(¹⁴N,2p)²⁴Na reaction)

Genetic Algorithm in Coulex data analysis: the JACOB code

Pawel Napiorkowski, HIL Warsaw

Coulex data analysis: multi-dimensional fit of ME's to measured $\gamma\text{-ray}$ intensities

- GOSIA:
 - standard Coulex analysis code
 - often trapped in a local minimum
 - various starting points have to be carefully checked (combinations of signs and magnitudes)
- JACOB:
 - automated, user-friendly way to find global minima in a GOSIA fit
 - \circ scan of the χ^2 surface, "promising" minima localised
 - real, "physical" solutions identified by the user
 - alternative method for error estimation (in development)

Polish side:

P. Napiorkowski, J. Srebrny, K. Wrzosek-Lipska, K. Hadyńska-Klęk, M. Dudeło *Heavy Ion Laboratory, University of Warsaw, Warszawa, Poland*

French side:

E. Clément, G. de France, A. Dijon GANIL, Caen, France

M.Zielińska CEA Saclay, IRFU/SPhN, Gif-sur-Yvette, France