Nuclear structure close to N=Z=50

M. Palacz (SLCJ Warsaw) G. de France (GANIL)

Goals of the collaboration

- Nuclear structure around ¹⁰⁰Sn - ⁹²Pd, ⁹⁶Cd
- Neutron detection expertise at Warsaw
 - Early electronics for the Nwall from Warsaw
 - Setup of the Nwall for the experiments at GANIL
- Simulation calculations using GEANT4
 - Nwall geometry built in Warsaw and included in the AGATA package
 - EXOGAM geometry from GANIL included in AGATA package
- Design of NEDA
 - M Palacz dedicated talk (June 6)

⁹²Pd and T=0 pairing

• Pairing along the N=Z line:

Our approach: search for isoscalar pairing in seniority violation

- The seniority \boldsymbol{v} is the number of nucleons that are not in pairs
- In a valence configuration jⁿ, the states can be labelled according v:

 The seniority scheme is revealed by the energy spacing between excited states

Fusion evaporation reactions to reach the N~Z line

DIAMANT: 80 CsI(TI) dets. $\varepsilon_{p \text{ or } \alpha} \sim 66\%$

EXOGAM-NWall-DIAMANT:

The power of the coupling

EXOGAM: 11 Clovers with partial shield. $ε_p ω \sim 10\%$ for E_γ =1.3 MeV

The Neutron Wall: 50 liquid scintillator detectors.

 ε_{1n} ~ 23%

Neutron Wall performance

n-γ Separation

Zero Cross Over time (Ch.)

Rejection of n scattering

 $\Delta x (mm)$

EXOGAM: First identification of γ-rays in ⁹²Pd

- **Three** γ -rays firmly identified
- In coincidence with 2n
- Not in coincidence with charged particles
- Mutually coincident
- All possible contaminants excluded
- Unambiguously assigned to ⁹²Pd

Production cross section ~ 0.5 μb

B Cederwall, F. Ghazi-Moradi, T Back, A Johnson, J. Blomqvist, E Clément, G. de France, R Wadsworth et al,

Nature 469, 68-71 (2011)

⁹²Pd: A new spin aligned np coupling scheme

Enhanced collectivity?

• Aligned isoscalar np coupling: $\Psi_{\text{G.S.}} = [(\{ vg_{9/2}^{-1} x \pi g_{9/2}^{-1} \}_{9+})^2]_{0+} x [(\{ vg_{9/2}^{-1} x \pi g_{9/2}^{-1} \}_{7+})^2]_{0+}$

- •The predicted 4-deuteron-hole like ground state has a significant intrinsic quadrupole moment
- Need next generation facility (S3@SPIRAL2) to measure magnetic moments, quadrupole moments,...

⁹⁶Cd GSI results

• Observe the decay of identified ⁹⁶Cd to an 15+ isomer in ⁹⁶Ag

⁹⁶Cd GSI results

⁹⁶Cd in-beam experiment

B Cederwall, G de France, R Wadsworth

- Needed to observe the ⁹⁶Cd prompt gammas and complement the GSI results
- Same setup: EXOGAM+Nwall+DIAMANT
- ⁴⁰Ca + ⁵⁸Ni \rightarrow ⁹⁸Cd*
- COPIGAL essential for testing, setting up and optimizing the Nwall (key detector for channel identification)
- Allows a very smooth and efficient organization of the Nwall campaign:
 - first tests in January 2012 (performances of the individual detectors, time alignment, thresholds, cabling,...)
 - in-beam test June 13-14 for the integration of EXOGAM, Nwall and DIAMANT electronics
 - runs in July

A side project: Isospin mixing in ³⁸₁₉K₁₉

Isospin mixing

- Isospin non conserving forces mix states with the same quantum numbers but different isospin
- Mixing is maximum for heavy N=Z nuclei
- Small $\Delta E \rightarrow$ larger mixing \rightarrow o-o nuclei

(in e-e nuclei T=0 and T=1 states with same

 J^{π} are separated by ~6 MeV)

³⁸K is a very good candidate from all these constraints

IAS in isobaric triplets in the A=22-42 mass region

• Fit to the data

 If isospin symmetry were not broken (i.e. exactly 1 here), the Mp for IAS should vary linearly with Tz

• Anomaly in A=38

F.M. Prados Estévez et al PRC 75, 014309 (2007)

The A=26-38 triplets

 \rightarrow SM calcs OK except for A=38...

The A=38 triplet

Comparison between SM calcs and experimental data

Our goals:

- Re-measure ³⁸Ca → transfer exprt in HIL Warsaw
- Measure the isospin mixing in ³⁸K in a model independent way → SPIRAL1

What do we have to measure?

A few B(E2) values:

 $\Phi = M(0,1) - M$ M(0,2)

Two experiments

- Lifetime measurement in ³⁸Ca (exprt approved in Warsaw)
 - Transfer reaction: ¹²C(³⁶Ar,³⁸Ca)¹⁰Be
 - The EAGLE array
 - Plunger device from Bucarest
- Coulomb excitation of an isomeric beam (³⁸K) at SPIRAL1
 - RIB from ⁴⁰Ca fragmentation
 - -g.s. is 3⁺; 0⁺₁ state has 924ms lifetime
 - Coulex of 0^{+}_{1} to populate 2^{+}_{1} (T=1) and 2^{+}_{2} (T=0)
 - Simultaneous measurement of the isomeric ratio

Summary

- COPIGAL is a fantastic tool for our collaboration to:
 - organize our experiments in a smooth and efficient way
 - To use the Warsaw and GANIL facilities in a complementary way: e.g. isospin symmetry studies in A=38 isospin triplet with radioactive beam experiment at GANIL and stable beam experiment at SLCJ
 design the future neutron array NEDA (see Marcin's talk)