

June 4-6, 2012, Krakow, Poland

Organized by:

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Perspectives in the studies of collective modes in the Milano - Krakow collaboration

... On going collaboration since 1980's ...

S. Leoni

University of Milano and INFN sez. Milano

on behalf of

MILANO: A. Bracco, F. Camera, S. Leoni, G. Benzoni, F. Crespi, B. Million, O.Wieland, S. Brambilla, S. Riboldi, P.F. Bortignon, G. Colò, E. Vigezzi et al., ...

KRAKOW: A. Maj, B. Fornal, M. Kmiecik, P. Bednarczyk, K. Mazurek, W.Męczyński, M. Zieblinski et al., ...

1980's HECTOR at NBI **HECTOR in LEGNARO** 14cmx1 Big BaF₂ BaF₂

A. Bracco, F. Camera, A. Maj, J.J. Gaardhøje, ...

HECTOR in LEGNARO

1980's

14cmx1

Big BaF₂

HECTOR at NBI

HECTOR + EUROBALL

LEGNARO-STASBOURG

LOOKING to the FUTURE: Towards SPIRAL2, SPES, HIE-ISOLDE, ...

Collective Modes in the continuum

(Adam Maj et al., ...)

1. Jacobi-Poincarè shape transitions Collective Modes in neutron-rich Ba isotopes (LOI SPIRAL2, GALILEO+RFD+LaBr3, ...)

2. Microscopic nature of Pygmy and GR states High-Lying Bound and Unbound states: (Inelastic Scattering and (p,p') at LNL and Krakow)

3. Asymmetric Fission and GDR studies Fission properties of PROTON-rich Nuclei (GARFIELD + HECTOR at LNL)

 Incomplete Fusion of Radioactive Beams on ⁷Li target (Bogdan Fornal, K. Rusek et al., ...)
 ISOLDE, SPIRAL2 and SPES Physics program

1- Search for Jacobi-Poincarè shape transitions in Ba nuclei

Study of collective modes of excitations in the neutron-rich Ba region via fusion-evaporation reactions

LOI SPIRAL2

Spiral2 Day1-Phase2 LoI

Adam Maj (Kraków), Silvia Leoni (Milano) - spokespersons Christell Schmitt - GANIL Liaison

A. Maj^a, K. Mazurek^{ac}, M. Kmiecik^a, P. Bednarczyk^a, M. Ciemala^a, B. Fornal^a, W. Meczynski^a, J. Grebosz^a, J. Styczeń^a, M. Zieblinski^a et al., S. Leoni^b, A.Bracco^b, G.Benzoni^b, F. Camera^b, F.C.L. Crespi^b, N. Blasi^b, B. Million^b, O. Wieland^b, P.F. Bortignon^b, G. Colò^b, E. Vigezzi^b et al., Ch. Schmitt^c, J.P. Wieleczko^c, M. Lewitowicz^c, G. de France^c, M. Rejmund^c, N. Alahari^c, E. Clement^c al., F. Azaiez^d, I. Matea^d, I. Stefan^d, M. Niikura^d, D. Beaumel^d, A. Korichi^d, A. Lopez-Martens^d et al., O. Stezowski^e, N. Redon^e, D. Guinet^e, G. Lehaut^e et al., J. Dudek^f, O. Dorvaux^f, S. Courtin^f, M. Rousseau^f, G. Duchene^f, D. Curien^f, Ch, Beck^f et al., D.R. Chakrabarty^g, V. Nanal^g, I. Mazumdar^g et al., T. Dossing^h, B. Herskind^h et al., G. De Angelisⁱ, D.R. Napoliⁱ, J.J. Valiente-Dobonⁱ et al., D. Bazzacco¹, E. Farnea¹, S.M. Lenzi¹, S. Lunardi¹, D. Mengoni¹, C. Ur¹, F. Recchia¹ et al. A. Gadea^m, T.Hüyük^m et al., J. Simpsonⁿ et al., W. Korten^o et al., A. Goergen^p et al., D. Jenkins^q, R. Wadsworth^q et al., M. Palacz^r, G. Jaworski^r, K. Hadynska-Klek^r, P. Napiorkowski^r, K. Wrzosek-Lipska^r et al., A. Atac^s et al.,

and the PARIS-EXOGAM-AGATA collaborations

Fusion reactions with radioactive beams (SPIRAL2)

Experimental Strategy:

A Step Approach from Legnaro to GANIL

Evolution of Nuclear Shapes of HOT nucleus at the Highest angular momenta

Lublin-Strasbourg liquid Drop (LSD) model by K. Pomorski and J. Dudek, PRC67 (2003) 044316

Analogous effect in fast rotating gravitating bodies

Oblate (MacLaurin)

Elongated triaxial (**Jacobi**) -> gateway to Hyperdeformed shapes at T~ o

Octupole, left- right asymmetric (**Poincarè**)

A.Maj *et al*. Int. J. Mod. Phys. E19, 532 (2010); K.Mazurek *et al.*, Acta Phys. Pol. B42, 471 (2011)

Search for Jacobi-Poincarè Transitions

 $\Rightarrow Important for FISSION dynamics, search for HyperDeformed shapes at T \approx O$

Search for Jacobi-Poincarè Transitions

Experimental Signatures

(selection residues from fission)

-500 -400 -300 -200 -100 0 100 200 300 400 500 (E__-E__)/2 [keV]

... Superdeformed ¹⁵²Dy was FIRST observed as ridge structures ...

Search for Jacobi-Poincarè Transitions

Experimental Signatures

Fission:

- Symmetric (Jacobi)
- Asymmetric (Poincarè)
- Line Shape of
 Giant Dipole Resonance
 - Warm Rotation:

(Variation in moment of Inertia)

- Giant Backbending
- Ridge-Valley Structures in γ-γ spectra

Complex Experimental setup: AGATA/EXOGAM2 array + 2π PARIS scintillator array + Recoil Detector (RFD/VAMOS)

(selection residues from fission)

Euroball + HECTOR

A.Maj et al, Nucl. Phys. A731 (2004)319

VGDR

... Superdeformed ¹⁵²Dy was FIRST observed as ridge structures ...

AGATA/EXOGAM/GALILEO + PARIS/LaBr3 + Recoil Filter/VAMOS

Experimental/Technical challenge ...

Expected Best Candidates: neutron-rich Ba nuclei

$^{128}Ba^* \rightarrow ^{134}Ba^* \rightarrow ^{138}Ba^* \rightarrow ^{142}Ba^*$

 $\underbrace{\text{EUROBALL IV}}_{64\text{Ni} + 64\text{Ni} \rightarrow 128\text{Ba}*}$

- NO discrete HyperDef bands
- Particle gated Ridge with very large J⁽²⁾

Many open channels

Expected Best Candidates: neutron-rich Ba nuclei

Image: More Perspectives at LNL for GALILEO + RFD

Physics Case 1:

(P. Bednarczyk et al.)

Evolution of quadrupole and octupole collectivity around the γ -soft N=Z ⁶⁴Ge nucleus, up to and beyond a rotational band termination.

Physics Case 2:

(S. Leoni et al.) Robustness of Shell Structure with temperature in very heavy systems **Th, Ra, Rn**

Fusion Evaporation with $\sigma \sim 100 \ \mu b - 50 \ mb$ (due to fission)

LETTER OF INTENT for AGATA+RFD LNL PAC June 2009

Coupling the AGATA Demonstrator with the Recoil Filter Detector

Very positive PAC response

Mechanical work to couple RFD to GALILEO

2- Microscopic nature of Pygmy and GR states: High-Lying Bound and Unbound states

- Inelastic Scattering @ LNL
- Perspectives at SPIRAL2/SPES
- (p,p'): opportunities in Krakow

Miscroscopic structure of highly excited states in STABLE nuclei: inelastic scattering ¹⁷O at 20 MeV/A

 (γ, γ') experiments $(\alpha, \alpha' \gamma)$ experiments (a) 30 MeV/A **Selective Population**

D. Savran et al., PRL97(2006)172502; T. Hartmann PRL85(2000)274

γ-ray gated spectra

Branching to Excited states

J.Beene et al PRC39(1989)1307 J. Beene et al. PRC41(1990)929 F.E.Bertrand et al NPA 482(1988)287c

AGATA experiment at LNL: inelastic scattering of light ion beams + γ-decay ¹⁷O @ 20 MeV/A on ²⁰⁸Pb, ⁹⁰Zr, ¹⁴⁰Ce, ¹²⁴Sn

2 E-AE Si Telescopes

Si pixel detectors : 60 (5x12) Pixel area of 4x4 mm²

- E detector: 1 mm thick
- $\succ \Delta E$ detector: 200 μ m thick

E_{res} ≈ 0.5 %

 3 – 5 AGATA triple clusters
 3 – 8 LaBr₃:Ce detectors Large volume (up to 9x20 cm)
 20 Helena BaF₂ clusters

June 2010:R. Nicolini, A. Bracco (Milano), D. Mengoni (LNL): 208Pb, 90Zr targetsDecember 2011:M. Kmiecik (Krakow), F. Crespi (Milano): 140Ce, 124Sn targets

Excitation of high lying modes: Isoscalar Giant Quadrupole and Monopole Resonance

γ-decay to be done

²⁰⁸Pb(¹⁷O,¹⁷O'γ) - decays to the ground state (E_γ≈E_χ)

pygmy states in ²⁰⁸Pb

gate on energy of ¹⁷O corresponding to direct decay to ground state: $E_x = E_\gamma$

Work in progress in ⁹⁰Zr, ¹²⁴Sn, ¹⁴⁰Ce, ...

A number of lines known by gamma scattering are seen in the region 4.5 - 7.5 MeV

Image: Image:

Systematic Studies of Miscroscopic structure of highly excited Inelastic Scattering ¹⁷O (20 MeV/A) on STABLE nuclei Pygmy states and GQR decay ...

GALILEO + LaBr3 + Si Telescopes

Image: Perspectives at SPIRAL2/SPES

Miscroscopic structure of highly excited states in **EXOTIC nuclei**: **Inverse Kinematics Inelastic Scattering** (10-20 MeV/A) on ¹³C target (S_n = 4.9 MeV) Evolution of Pygmy states in n-rich systems, ...

AGATA/EXOGAM/GALILEO + PARIS/LaBr₃ + Si Telescopes

□ ... (p,p') : opportunities in Krakow

230 MeV proton: isovector probe

- Population of GR modes
- Study of decay branching (γ,n, ...)

Population of GQR

p identification:
△E detector: Si strip
E detector: 3" x 8" LaBr₃
E_{res} ≈ 0.7 % @ 200 MeV F. Quarati et al., private comunication

3- Asymmetric Fission and GDR studies

- Fission properties of PROTON-rich Nuclei (A. Bracco et al., ...)
- Jacobi-Poincarè transitions (A. Maj et al., ...)

GARFIELD + LaBr3/BaF2

Charged particles and Fission Fragments

Fission properties of PROTON-rich Nuclei at E*≈ B_f Challenging Task: proton-rich nuclei never fission from g.s.

Cold Reaction $9^{\circ}Zr + 9^{\circ}Zr (^{89}Y) \rightarrow ^{179}Au$:

T = 0.7 MeV, E^* = 26 MeV Radiative Fusion: Only γ emission

- High spin
- Competition with fission
- Phase space for warm GDR γ-decay
- Strong sensitivity to deformation
- Strong SHELL EFFECTS

→ FISSION Probed by GDR

F. Camera, A Bracco, V. Nanal ... et al PLB560(2003) 155-160

Observation of Asymmetric Fission in ¹⁸^oHg (β-delayed)

PRL 105, 252502 (2010)

PHYSICAL REVIEW LETTERS

week ending 17 DECEMBER 2010

Service Asymmetric Fission in Proton-Rich Nuclei

A. N. Andreyev, ^{1,2} J. Elseviers, ¹ M. Huyse, ¹ P. Van Duppen, ¹ S. Antalic, ³ A. Barzakh, ⁴ N. Bree, ¹ T. E. Cocolios, ¹
 V. F. Comas, ⁵ J. Diriken, ¹ D. Fedorov, ⁴ V. Fedosseev, ⁶ S. Franchoo, ⁷ J. A. Heredia, ⁵ O. Ivanov, ¹ U. Köster, ⁸ B. A. Marsh, ⁶
 K. Nishio, ⁹ R. D. Page, ¹⁰ N. Patronis, ^{1,11} M. Seliverstov, ^{1,4} I. Tsekhanovich, ^{12,17} P. Van den Bergh, ¹ J. Van De Walle, ⁶
 M. Venhart, ^{1,3} S. Vermote, ¹³ M. Veselsky, ¹⁴ C. Wagemans, ¹³ T. Ichikawa, ¹⁵ A. Iwamoto, ⁹ P. Möller, ¹⁶ and A. J. Sierk¹⁶
 ¹Instituut voor Kern- en Stralingsfysica, K.U. Leuven, University of Leuven, B-3001 Leuven, Belgium ²School of Engineering, University of the West of Scotland, Paisley, PA1 2BE, United Kingdom, and the Scottish Universities Physics Alliance (SUPA)

Absence of proton/neutron shell effects In FISSION of proton-rich Nuclei

In **contrast to the fission of neutron rich nuclei** for which shell effects play an important role (see ¹3²Sn for the fission of U)

γ- spectra of Fission Fragments

- Strong sensitivity to deformation
- Nuclear Viscosity

Dioszegi, A Bracco, F. Camera et al., PRC63(2000) 014611

Jacobi and Poincarè transitions probed by fission: Mass asymmetry of fission fragments in 124-134 Ba chain

Fission fragments mass asymmetry 0.4 ¹¹⁶Ba 128Ba 134Ba 0.35 Mass Assymetry (A₁-A₂)/A_{CN} 0.3 128Ba 0.25 ³⁴Ba 0.2 0.15 116**Ba** 0.1 $B_f > 3 MeV$ 0.05 0 50 60 70 80 90 100 110 120 40 L [ħ] ¹¹⁶Ba : fission is almost mass symmetric ¹²⁸Ba and ¹³⁴Ba : Strong asymmetry $9^{2}-9^{6}$ Zr beams + 3^{2} S \rightarrow $1^{24}-12^{8}$ Ba 84,86 Kr + beams 40,48 Ca \rightarrow $^{124-134}$ Ba

→ Complementary to SPIRAL2 physics program

A.Maj, K. Mazurek et al., Int. J. Mod. Phys. E19 (2010) 532 K.Mazurek, J. Dudek et al., Acta Phys. Pol. B42, 471 (2011)

Equilibrium shape evolution

□ Incomplete Fusion of Radioactive Beams on ⁷Li target

(Bogdan Fornal, K. Rusek et al., ...)

HIE-ISOLDE, SPIRAL2 and SPES Physics program

Further strength to the MILANO-KRAKOW collaboration ...!

LOI's for HEI-ISOLDE, SPIRAL2 and SPES

⁷Li(^ASn, α2n), ⁷Li(^AHg, α2n) High Spins, Excited States

¹³²Sb, ¹³⁴Sb, ²⁰⁶Tl, ²⁰⁸Tl: 1 and 2 nucleons away from doubly magic cores TEST Bench for SHELL model and Particle-Phonon model ...

Complementary to YRAST Spectropy from Fission, Fragmentation, transfer, deep-inelastic,...

APPROVED TEST Case at REX-ISOLDE:

Spectroscopy of n-rich ^{95,96}Rb nuclei with ⁷Li(⁹⁴Kr,αxn) at ~ 3MeV/u ⁴⁷/_α

maximum available energy

Acquire Experience with Incomplete Fusion Reactions with a RIB

Reaction Mechanism, Inverse kinematics, particle detection, Backgrouds, ...

Spectroscopy of 95,96 Rb

Moderate High Spins, Highly Excited States, ... Region of Shape Changes from N=56 (spherical) to N=60 (deformed) **importance for r-process path**

Gamma spectroscopy tagging on lpha particles

MINIBALL + T-REX

Strong on-going Milano-Krakow collaboration (since 1980's)

+ Collective excitations at the extremes of SPIN, TEMPERATURE, ISOSPIN

+ Complex Detector System Large Volume Scintillators (BaF2/LaBr3)+ Ge Arrays + Ancillaries

Perspectives ...

Step approach physics program towards SPIRAL2, HIE-HISOLDE, SPES, ... Based on states of the art detection systems (GALILEO, AGATA, EXOGAM, PARIS, HECTOR+, GARFIELD, ...)

Theoretical Support (P.F. Bortignon, G. Colò, E. Vigezzi, ...)

Thank You for the Attention