GAMMA – RAY SPECTROSCOPY WITH GALILEO AT LNL

CALIN A. UR INFN SEZIONE DI PADOVA

5/6/2012

2nd COPIGAL Workshop on Studies of Exotic Nuclei

Large Gamma–Ray Arrays at LNL

- High spin states
- Collectivity and shell model
- Isospin symmetries
- Isospin mixing in N=Z nuclei
- Spectroscopy at the dripline
- Shell stability and evolution in neutron rich nuclei
- Symmetries at the critical point
- Rotational damping

Large Gamma–Ray Arrays at LNL

- High spin states
- Collectivity and shell model
- Isospin symmetries
- Isospin mixing in N=Z nuclei
- Spectroscopy at the dripline
- Shell stability and evolution in neutron rich nuclei
- Symmetries at the critical point
- Rotational damping

The GASP Gamma-Ray Array

GASP

Operational since 1992

BGO multiplicity filter - 80 elements

Mainly high–spin states populated in fusion–evaporation reactions coupled to ancillary detectors such as EUCLIDES, Plunger, n-Ring, RFD, LuSiA

GASP – first results

PHYSICAL REVIEW LETTERS

VOLUME 74, NUMBER 6

GASP 1995 The increase of the ⁶⁸Ni 2⁺ excitation energy, by more than 600 KeV compared with ⁶⁶Ni, indicates a significant subshell

closure at N=40

6 FEBRUARY 1995

FIG. 3. Systematics of selected states in even Ni isotopes. The ⁶⁸Ni results are prominently displayed and compared with the S3V shell model calculations (see text).

The CLARA Gamma-Ray Array

Coupled to the PRISMA spectrometer

- 24 Clovers setup
- Efficiency ~ 3 % @ 1.3 MeV
- Peak/Total ~ 45 %
- Position θ = 103°-180°
- FWHM ~ 10 keV for E_γ= 1.3MeV
 @ v/c = 10 %

Clover detectors placed, with respect to the PRISMA entrance, at:

 $\theta = 102.9^{\circ}$ $\theta = 128.6^{\circ}$ $\theta = 141.4^{\circ}$ $\theta = 154.3^{\circ}$

 $\theta = 180.0^{\circ}$

The CLARA Gamma-Ray Array

and GAMMASPHERE thick target data (γγγ coincidences)

Sum over all the distances

SM calc.

⁴⁹₁₉ **K**₃₀

The CLARA Gamma-Ray Array

Eγ (keV)

target data (γγγ coincidences)

GASP and the Recoil Filter Detector

RFD measures recoils in coincidence with γ–rays detected in Ge–arrays

- selection of the recoils of interest by ToF technique
- determination of the recoil velocity vector event-by-event

W.Męczyński et al. - NIM A580, 1310 (2007)

GASP and the Recoil Filter Detector

GASP and the Recoil Filter Detector

Lifetimes: tens - hundreds fs

P.Bednarczyk et al., LNL Annual Report 2009

The AGATA Gamma-Ray Tracking Array

AGATA D – 2010 European Collaboration 5 triple cluster detector ϵ_{ph} (1.3MeV) ~ 6% Coupled to the PRISMA

Feb. 28, 2011 – Mar. 14, 2012 14 experiments 86 days over 170 total

The CNO cycle and the $^{14}N(p,\gamma)^{15}O$ reaction

nuclear x-sections are precisely known

C,N abundances in the solar core can be obtained by measuring the neutrino fluxes [W.C.Haxton et al., As.J.687(2008)678]

possible solution for the "solar composition problem" [A.M.Serenelli et al., As.J.Lett. 705, L123-L127 (2009)]

¹⁴N(p,γ)¹⁵O is the <u>"bottle neck"</u>

The CNO cycle and the $^{14}N(p,\gamma)^{15}O$ reaction

M. Marta / Progress in Particle and Nuclear Physics 66 (2011) 303-308

Adopted Γ_Y (6792 keV)= 0.9 ± 0.2 eV S_{GS}(0) = 0.20 ± 0.05 keV·b

M. Marta et al., Phys. Rev. C 78, 022802(R) (2008)

Lifetime of the 6.79 MeV state in ¹⁵O

GROUP	METHOD	T [fs]	Ref.
Oxford 1968	DSAM d(14N,15O)n	< 28	W. Gill et al., NP A121, 209 (1968)
TUNL 2001	DSAM 14N(p,Y)150	1.6±0.7	P.F. Bertone et al., PRL 87, 152501 (2001)
RIKEN 2004	CE 208Pb(150,150*)	0.69±0.43	K. Yamada et al., PL B579, 265 (2004)
LUNA 2004	X-section+R matr. fit	1.1±0.5	A. Formicola et al., PL B591, 61 (2004)
TUNL 2005	X-section+R matr. fit	0.3 <u>±</u> 0.1	R. Runkle et al., PRL 94, 082503 (2005)
Bochum 2008	DSAM 14N(p,Y)150	< 0.77	D. Schuermann et al., PR C77, 055803 (2008)
LUNA 2008	X-section+R matr. fit	0.75±0.20	M. Marta et al., PR C78, 022802(R) (2008)

DSAM (Doppler Shift Attenuation Method) (DIRECT!) lifetime measurement in inverse kinematics exploiting the detection efficiency and energy resolution of the AGATA HPGe array

Uncertainties too large

The experiment: reaction and setup

Data analysis

first interaction point of each gamma-ray reconstructed event-by- event with a 4mm indetermination

detected gamma-ray can be sorted in fev degrees θ "slices"

by C. Michelagnoli

Data analysis

lineshape analysis on the 12 2-degrees "slices"

by C. Michelagnoli

Data analysis: reaction kinematics

both ¹⁵O and ¹⁵N excited levels are mainly populated *via* nucleon (proton and neutron, respectively) transfer reactions

Data analysis: test case ¹⁵N

(*from Γ=(0.3±0.2) eV [*R. Moreh et al., PRC 23 (1981) 988*])

Data analysis: the 6.79 MeV state in¹⁵0

The AGATA Gamma–Ray Tracking Array

AGATA concluded the physics campaign at LNL at the end of December 2011 AGATA D – 2010 European Collaboration 5 triple cluster detector ϵ_{ph} (1.3MeV) ~ 6% Coupled to the PRISMA

Feb. 28, 2011 – Mar. 14, 2012 14 experiments 86 days over 170 total

The GASP Gamma-Ray Array

GASP 1992 - 2012

 $\begin{array}{l} \text{40 HPGe (80\%) + AC} \\ \epsilon_{\text{ph}} \left(1.3 \text{MeV} \right) \sim 3\% \quad (@ \ \text{27 cm}) \quad \text{I} \\ & \quad \sim 5.8\% \ (@ \ \text{22 cm}) \quad \text{II} \\ \text{P/T} \sim 60\% \end{array}$

BGO multiplicity filter – 80 elements

Mainly high-spin states populated in fusion-evaporation reactions coupled to ancillary detectors such as EUCLIDES, Plunger, n-Ring, RFD, LuSiA

March 6 – 12 last experiment

April 4 – official shutdown

Perspectives

Assembling GALILEO

The GALILEO project

GALILEO – 2012

new gamma-ray array

European Collaboration take advantage of the recent technical developments for AGATA preamplifiers, digital sampling, preprocessing, DAQ \rightarrow high counting rates (30–50 kHz/det) use of existing detectors EB cluster detectors capsules GASP detectors \rightarrow high photopeak efficiency use beam facilities at LNL Tandem, ALPI, PIAVE – stable SPFS – RIB \rightarrow production of new nuclei

GALILEO – GEANT4 Simulations

Mixed configuration 30 GASP detectors @ 22.5cm 5 5 5 5 5 5 29° 51° 59° 121° 129° 151° 10 triple cluster (EB clusters) @ 24cm 90°

- symmetrical coverage of the solid angle (ang. distr., DSAM)
- good granularity
- at 90° detectors have relatively lower solid angle aperture
- □ anti–Compton shields
 - for GASP detectors already available
 - for the triple clusters new AC shields
- Ilimited impact on the array performance when dismounting the first ring of detectors to allow insertion of ancillary detectors

The GALILEO Gamma-Ray Array

GALILEO – Location

Experimental Hall II – replacing GASP

GASP – Dismounting

GALILEO – Parts

SCM Modena

Triple Cluster Detector – R&D

Development of the triple cryostat

end-cap in carbon fiber

dewar

internal cabling

optimizing the thermal conduction (LN₂ consumption)

EB cluster detectors 7 encapsulated n–type HPGe detectors FWHM < 2.4 keV @ 1332.5 keV $\epsilon_{int} \sim 60\%$ @ 1332.5 keV common cryostat independent HV/LV/FE

Triple Cluster Detector – First Prototype

GALILEO – Electronics R&D

New electronics is being built in close synergy with AGATA

* low-noise, fast, low-power consumption *

- new cold part (AGATA FET)
- use solutions already developed for AGATA
 - core type preamplifiers
 - GTS
 - AGAVA interface with the VME electronics (colab. with Kracow)
- $\circ~$ new developments for AGATA and GALILEO
 - low power digitizers
 - readout and preprocessing on PCI express boards
- o anti-Compton shields signal readout
 - digital (similar to the Ge detectors)

GALILEO – Preamplifiers

Property	Value	Tolerance
Conversion gain	100 mV / MeV (terminated)	$\pm 10 \text{ mV}$
Noise	0.6 keV FWHM (C _d =0 pF @ 150K)	
Noise slope	8 eV / pF	±2 eV
Rise time	~13 ns (0 pF)	±2 ns
Rise-time slope	~0.2 ns / pF	
Decay time	50 µs	$\pm 2 \ \mu s$
Integral non linearity	< 0.025% (dyn.~3.5V)	
Output polarity	Differential, $Z_0 = 100\Omega$	
Fast reset speed	10 MeV/µs	
Inhibit output	LVDS or CMOS	
Power supply	\pm 6.5 V, \pm 12.5 V	±0.5V
Power consumption FET	< 20 mW	
Power consumption (except diff. buffer)	< 350 mW	
Supplementary power at very high counting rates	~230 mW	
Mechanical dimension	1.6 x 1.8 inch	

A.Pullia, G.Pascovici, C.A.Ur submitted to IEEE Nuclear Science Symposium

- a fast low-noise charge sensitive preamplifier based on the core-type AGATA preamplifier
- over-threshold fast reset circuitry to reduce dead-time due to preamp/ADC saturation
- ToT signal recover energy information up to 180 MeV
- a fast analog trigger signal can be produced useful for ancillary detectors
- used for both tapered and triple cluster detectors

GALILEO – Digital Sampling

A.Pullia,

Digi-opt12: 12-channel 14/16-bit 100/125-MS/s digitizer with optical output for GALILEO/ AGATA

- single–ended/differential analog input signals
- end termination for both differential
 – and common
 –mode components of the input signals
- AC or DC coupling to the ADC,
- introduction and remotely-controlled adjustment of a differential DC offset, useful for dynamic range maximization
- remotely controlled dynamic-range selection,
- easily tuned anti-aliasing filter
- precise inter-channel time synchronization
- optional interleaved mode for equivalent sampling-frequency multiplication

Power consumption < 10 W

GALILEO – Readout & Preprocessing

GALILEO – Electronics & DAQ

GALILEO – Electronics & DAQ

GALILEO – Ancillary Detectors

Study of weak reaction channels or weakly populated structures Lol 2009-2012 high efficiency high resolving power EUCLIDES DANTE LuSiA MW-PPAC Binary reactions Light charged TRACE fragment detectors particles detectors Lifetime n-Ring measurement Neutron Cologne GALILEO N-Wall detectors Plunger Fast timing detectors Recoil High-energy detectors g-ray detectors LaBra **HECTOR** RFD **HECTOR+** SPIDER **PARIS Prototype**

GALILEO – RFD

3D Model **RFD Kracow**

GALILEO & RFD – Physics Case

"Collective Modes of Excitation"

Milano-Krakow

Configuration 1: GALILEO + Scintillators LaBr₃ + RFD:

- Search for Jacobi transition in neutron rich Ba isotopes
- Study of very heavy Th, Rn, Ra nuclei at high spins and $T \neq 0$
- Rapidly rotating nuclei in A=60 region

Configuration 2: GALILEO + Scintillators LaBr₃ + TRACE:
 Inelastic scattering of ¹⁷O ions : pygmy dipole states and GQR

Configuration 3: GALILEO + Plunger + PPAC:

In-beam spectroscopy by transfer reactions with Heavy lons: search for particle-phonon couplings (Ni, Fe, ...)

Summary

Long-term collaboration in the frame of nuclear structure studies through the means of gamma-ray spectroscopy

- common experiments
- development of detectors
- theoretical calculations

A new gamma-ray array GALILEO is under development at LNL

R&D for improving detectors and electronics

- higher detector granularity
- improved efficiency at high energies (composite configuration)
- Iow noise, fast electronics
- digital treatment of the signals

Common physics interest • use of PARIS prototype • use of RFD detector