The PRISMA experiment at LNL

Traditionally, our group has always been involved in 2 lines of research:

HI fusion reactions around V_B

presently focused at E << V_B

2-body reactions, the same energy

pair transfer enhancement (transfer coupling to fusion n-rich isotope production)

Detector set-up, experimental matrix ΔE -ToF and angular distributions

Low-energy fusion hindrance

Long known for its large enhancement in the near sub-barrier region ...

... fusion cross section drops below standard CC calculations at very low energies (and cross sections) (C.L.Jiang, several)

deviation from "exponential-like": the slope gets steeper at lower energy, suggesting some kind of threshold effect

two ways to represent hindrance

C.L.Jiang et al. Phys.Rev.Lett. 93 (04) 012701

change of the logarithmic slope

$$L(E) = \frac{d\ln(E\sigma)}{dE}$$

"deviation from the trend": the astrophysical S - factor may show a maximum

$$S(E) = E\sigma \cdot \exp(2\pi\eta)$$

not independent: if S(E) has a maximum

$$L(E) = L_{S}(E) = \frac{\pi\eta}{E}$$

the energy E_s follows a systematic trend

A handle to probe the inner part of the nucleus-nucleus potential.

An alternative point of view:

2-step model

standard CC for **r>R**_{touch} neck: dinuclear system (1b BP) for **r>R**_{touch}

Adiabatic approximation

Our measurements of Deep sub-barrier fusion

³⁶S+⁴⁸Ca PRC78 (2008)
⁴⁸Ca + ⁴⁸Ca PLB 679 (2009)
³⁶S+⁶4Ni etc. PRC82 (2010)
Ca + Ca systems. PRC82 (2010)

⁵⁸Ni+⁵⁴Fe PRC82 (2010)
⁴⁰Ca+⁴⁰Ca, ³⁶S+⁶⁴Ni. NPA 834 (2010)
⁴⁰Ca+⁴⁰Ca etc. PRC85 (2012)

An interesting systematics:

other recent results

D.Montanari

N-Z yields

Paolo Mason, Giugno 2007

LNL experiments in the n-rich region

Reaction in inverse kinematics with PRISMA

below barrier: no interference («slope anomaly») only the tails of the wavefunction overlap semiclassical approximation valid

forward focusing low cross sections

Previous experiment - ⁹⁶Zr+⁴⁰Ca

L. Corradi, FUSION11, St. Malo – France

D.Montanari. NN2012

Previous experiment - ⁹⁶Zr+⁴⁰Ca

The experiment – ⁶⁰Ni +¹¹⁶Sn

PRISMA + AGATA

Direct kinematics

Angular distributions

 $\theta_{lab} = 50^{\circ}$ and 70°

 $(D \approx 14.5 \text{ fm and } 16.7 \text{ fm})$

Gamma-rays used to estimate the population of excited states

Closed-sh

Superflui

PRISMA only

Inverse kinematics

Excitation function $E_{beam} = 410 - 500 \text{ MeV} (\theta_{lab} = 20^{\circ})$ (D $\approx 12.3 \text{ to } 15.0 \text{ fm}$)

Ground state Q-values

		+1n	+2n	+3n	+4n
	⁹⁶ Zr + ⁴⁰ Ca	+ 0.51	+ 5.53	+ 5.24	+ 9.64
d	¹¹⁶ Sn + ⁶⁰ Ni	- 1.74	+ 1.31	- 2.15	- 0.24
				Montanar	

The experiment – ⁶⁰Ni +¹¹⁶Sn

Qvalues for ⁹⁶Zr+ ⁴⁰Ca

Qvalues for ¹¹⁶Sn + ⁶⁰Ni

12

The experiment – ¹¹⁶Sn + ⁶⁰Ni

Slopes for ¹¹⁶Sn + ⁶⁰Ni

D.Montanari. NN2012

Present limitations and possible improvements

G.Montagnoli et al. Nuc.Instr.Meth. A547(2005)455

Z resolution / discrimination

Below the Bragg peak no Z-separation can be obtained

E/A > 2-3 MeV for A ~200

E. Fioretto

Mass resolution

P. Mason

A more efficient focal-plane detector

10 µm diameter Au plated Tungsten wires

