Experimental activity of the LNS-Stream collaboration

Pierpaolo Figuera INFN-Laboratori Nazionali del Sud

Outline of the talk

Collisions around the barrier induced by halo and/or weakly bound nuclei

- Motivations
- Experimental methods
- Collisions induced by halo nuclei
- Collisions induced by stable weakly bound nuclei
 - Summary and perspectives

MSM: Medea-Sole-Maciste

• Description of the setup

• Past and future studies on GDR emission with MSM

Collisions around the barrier induced by halo and/or weakly bound nuclei

Characteristics of the projectiles: Low break-up thresholds, diffuse tails ↓ What do we expect for direct reactions?

Are direct mechanisms (e.g. break-up, transfer) favourite ?

What do we expect for fusion reactions ?

a) Static effects: diffuse tail \Rightarrow reduction of Coulomb barrier and increase of σ_{FUS} ?

b) Dynamic effects: Coupling to bound and continuum states

Key question: which is the effect of coupling to continuum ?

Experimental techniques for elastic and direct reaction measurements

Aim: measure charged particles in single and coincidence with low intensity beams Need for: large solid angles + good granularity \Rightarrow wide use of segmented Si detectors

Example CLAD @ LNS 6 ΔΕ-Ε Si Telecopes 50-1000 μm

Interstrip effects in DSSSD

In progress: interstrip effect study. Collaboration LNS+RBI-Zagreb

Experimental techniques for fusion excitation function measurements

Aim: measure $\sigma(E)$ for fusion evaporation reactions

Problems: low σ_{Fus} and beam intensities, direct ER detection impossible \Rightarrow

Activation techniques widely used !

The activation technique we are using to measure $\sigma_{FUS}(E)$

Off line detection of atomic X rays following EC decay of the ER.
 ● 100% intrinsic detection efficiency for X rays + very low background ⇒ suitable for experiments with RIBs

^{4,6}He+⁶⁴Zn @ LLN: elastic and transfer + break-up

⁶He+⁶⁴Zn: conclusions.

Presence of large alpha particle yield due to tranfer and B.U. events.
Transfer+B.U cross section dominates (~80%) total reaction .

A. Di Pietro et al.: Phys.Rev.C 69(2004)044613, V.Scuderi et al.: Phys.Rev. C 84, 064604 (2011)

^{4,6}He+⁶⁴Zn @ LLN and RBI Zagreb : fusion excitation functions

V.Scuderi et al. PRC 84, 064604, (2011)

^{9,10,11}Be+⁶⁴Zn elastic scattering angular distributions

Reaction cross-sections

 σ_R^9 Be $\approx 1.1b \sigma_R^{10}$ Be $\approx 1.2b \sigma_R^{11}$ Be $\approx 2.7b$

A. Di Pietro et al. Phys. Rev. Lett. 105,022701(2010)

¹¹Be+⁶⁴Zn Transfer+B.U. angular distributions

Which is the origin of the ¹¹Be total reaction enhancement?

Conclusions on ^{9,10,11}Be+⁶⁴Zn Similar total reaction cross sections for ^{9,10}Be $\sigma_{REACT}(^{11}Be) \approx 2 \sigma_{REACT}(^{9,10}Be)$ $\sigma_{TR+BU} \approx 40\% \sigma_{REACT}$

A.Di Pietro et al, Phys. Rev. Lett. 105,022701(2010) Phys. Rev. C 85, 054607 (2012)

Collisions around the barrier induced by stable weakly bound nuclei.

Key question is still: coupling to continuum effects? But stable beams ⇒ better data quality.

Example: The ^{6,7}Li+⁶⁴Zn case @ LNS

^{6,7}Li+⁶⁴Zn Elastic scattering angular distributions

^{6,7}Li+⁶⁴Zn O.P. and threshold anomaly

⁶Li+⁶⁴Zn

⁷Li+⁶⁴Zn

No usual threshold anomaly is observed

M.Zadro et al. Phys. Rev. C 80,064610(2009) and to be published

^{6,7}Li+⁶⁴Zn fusion and total reaction excitation functions

- Problems in previously published
 - $\sigma_{FUS}(E)$ confirmed.
 - Good agreement with

previously published $\mathbf{\sigma}_{\text{REACT}}(\mathbf{E})$.

σ(⁶Li)/σ(⁷Li) ratio similar to other systems.

⁶Li+⁶⁴Zn ER relative yield

Can we get information on the CF/ICF relative yield via comparison with CF cascade calculation ?

Above barrier (Vc~13 MeV) CF dominates, below barrier d ICF or n transfer dominate

Summary and perspectives Collisions around the barrier induced by halo nuclei

Most of the experiments performed with ⁶He beams

(e.g. ⁶He+⁶⁴Zn, ⁶He+²⁰⁹Bi, ⁶He+²³⁸U, ⁶He+⁶⁵Cu, ⁶He+¹⁹⁷Au, ⁶He+²⁰⁸Pb, ⁶He+¹²⁰Sn)

• Suppression of elastic scattering A.D. in the 'rainbow' region ⇒ total reaction cross sections for ⁶He much larger than for ⁴He

• Very large α particle yield from direct processes saturating most of the σ_R

• 2n transfer most important reaction channel with ⁶He

• First data with projectiles different than ⁶He confirm such findings

• Different conclusions reached concerning the presence of enhancement effects on low energy fusion cross sections due to the projectile halo structure

However

• Most of data do not explore the sub barrier region with reasonable errors

Role played by static and dynamic effects on conclusions not always clear.

• New data with halo beams different than ⁶He needed.

• New sub barrier fusion data with halo nuclei needed.

• Consistent systematic comparison of fusion data to separate different effects needed (See e.g. L.F. Canto et al. Nucl. Phys. A821,51,(2009))

Summary and perspectives

Collisions around the barrier induced by stable weakly bound nuclei

• Absence of usual T.A. observed for many systems

• Suppression of CF above the barrier on heavy targets well estabilished

• New subbarier fusion data needed

• Better understanding of CF/ICF competition on light-medium mass targets needed

Planned activities for LNS-STREAM

- Still working on old 6He data
 - New experiments with ⁸B
- New experiments with ¹⁰Be beams

• New fusion data with ^{6,7}Li

Experimental set-up: MEDEA + SOLE + Maciste

Experimental set-up: MEDEA + SOLE + Maciste

SOLE Superconducting Solenoid

 $B_{max} = 5$ Testa, Maximum Solid angle = 40 msr Acceptance: Angular = ±6.5°, Momentum = ± 10%

MACISTE:

4 DE-E telescopes consisting of: I.C. 10 cm thick (working conditions 10-150 mbar) MWPC (position resol. = 3 mm, time resol = 500ps) Plastic Scintillators (BC-408 - 2 cm thick)

Previous activity of MEDEA + SOLE + MACISTE

Intermediate energies: 10 <E_{beam}< 100 MeV/A

Nuclei at very high E* populated.

Pre-equilibrium phenomena due to nucleon-nucleon collisions appear. (High energy gammas and energetic nucleons)

Study of the origin of high energy protons and high energy gamma-rays Alba et al. PLB 322 (1994) 38, Coniglione et al. PLB 471 (2000) 339, Sapienza et al PRL 73 (1994) 1769

Pre-equilibrium GDR emission

Martin et al. PLB 664 (2008) 47

• Study of the GDR quenching at high E* for nuclei with A ~100÷130

Le Faou et al. PRL 72(1994)3321, Santonocito et al. E.P.J.. A30 (2006) 183, Santonocito et al. Nucl. Phys. A788 (2007) 215c

Study of the GDR gamma multiplicity saturation

 Reactions

 ³⁶Ar + ⁹⁰Zr
 @ 27 MeV/A

 ³⁶Ar + ⁹⁸Mo
 @ 37 MeV/A

- Hot nuclei populated through incomplete fusion
- Evaporation residues measured in coincidence with LCP and gamma-rays

300<E*<500

(through velocity measurement and the study of light charged particle spectra)

- Experimental data
- --- Standard CASCADE

----- CASCADE with a cut-off at E* = 240 MeV

CASCADE: input GDR S = 100% EWSR, Γ = 12 MeV E_{GDR} = 76 / A^{1/3} a = a(T)

The saturation of the γ multiplicity is consistent with GDR disappearance above $E^* > 250 \text{ MeV}$

Same cut-off value reproduces the γ spectra at different energies (350<E*<500 MeV)

Evidence of a limiting $E^*/A \sim 2.2 \text{ MeV/A}$ for the collective motion

Study of the GDR saturation onset @ LNS

Investigate the GDR properties in the excitation energy region 150<E*<330 MeV to map the progressive disappearance of the GDR

Reactions studied at LNS - CATANIA:

¹¹⁶Sn + ¹²C, ²⁴Mg @ 17 MeV/A ¹¹⁶Sn + ¹²C, ²⁴Mg @ 23 MeV/A

- \rightarrow hot nuclei populated through ICF and CF
- → ER in coincidence with LCP and gamma
- → <E*> and <A> of decaying systems from LMT and LCP spectra
 - Full γ spectrum for all reactions
 Exponential fits of the *np* Bremsstrahlung component for E_γ >35 MeV
 - Statistical γ spectrum after subtraction of the bremsstrahlung component extrapolated to low energies

Saturation onset from comparison with CASCADE calculation

Measurements for Er + Sc, Al, Mg planned to explore the region A ~190

LNS-STREAM

R. Alba, A.Del Zoppo, A. Di Pietro, P.Figuera, M.Fisichella, M.Lattuada, C.Maiolino, A. Musumarra, D.Santonocito, V.Scuderi

Main collaborations

Ruder Boskovic Institut, Zagreb, Croatia Universidad de Huelva, Huelva, Spain Inst. de Estructura de la Materia, CSIC, Madrid, Spain Universidad de Sevilla, Spain IPN Orsay